Diagnostics Plans

Outline

- **■** Interface and Integration
- **■** The Goal and the Obstacles
- **■** System Plans by Priority
- **"** 'Diagnostic Event' Triggers and Buffering
- **■** Unified Data Display

Interface and Integration

- **■** Diagnostics are maturing
 - · Major systems are in place and shaken out
 - Effort shifting to Interface and Integration
- **■** Interface to Operations
 - Unified Data Displays Injection, Ramp, Store
 - Minimize need for Documentation and Specialists
- **■** Integration During L/P² and Machine Development
 - Instruments run from the Sequencer, or
 - Instruments integrated with Applications where possible, or
 - Instruments operable from MCR w/o specialists

The Goal and the Obstacles

- **■** How we (Diagnostics) understand our job
- \blacksquare Goal to assist in providing L and P²
- **** Obstacles limits are defined by
 - Control of Tune, Chromaticity, and Coupling
 - Injection Efficiency matching, damping, IBS, e-cloud/vacuum, beambeam, dynamic aperture,...
 - Ramp Reliability IBS, e-cloud/vacuum, beam-beam, instabilities, transition, ...
 - L/P² Lifetime at Store IBS, beam-beam, e-cloud/vacuum, dynamic aperture, resonance compensation, nonlinearities,...
 - Short lifetime requires good injection efficiency and ramp reliability

RHIC Retreat 2002 Peter Cameron

System Plans by Priority

5

- **BLM** recalibrate thresholds
- **■** BPM Todd separate talk this session
- **WCM/DCCT** no major changes, FFT (split?)
- ARTUS in this talk
- **♯** PLL separate talk this session
- **♯** IPM Roger separate talk this session; nestled IPM and the optical IPM
- **Schottky's** in this talk
- **AC** Dipole in this talk
- **■** Dampers Angelika and Mike separate talks this session
- **#** Coherence Monitor Mike separate talk this session
- **■** Head-Tail, Buttons, QMM in this talk
- **■** Stochastic Cooling good data from last run. Plan?

ARTUS

■ Version 2 Analog Front End

- Easier and more reliable timing
- Enables another coherence monitor?
- Enables switch to all large β BPMs

\blacksquare All large β BPMs

- Helps compensate for loss of 2m of Kicker to Damper
- Requires additional hardware and effort from Controls
- **■** Preamps in the tunnel?

LF and HF Schottky

■ Summary of Last Run - Schottky did not fulfill its potential

- Saturation due beam steering and effect of 200MHz RF
- Frequency agility available local oscillators, mixers, digitizers
- Software (version control and LabVIEW idiosyncrasies)
- GBytes of HF spectra archived will be examined with refined software

■ Plans for next run

- Solve aperture problems around IP2 (also important for IPM)
- Position control of Moveable BPM
- Improved frequency agility NCOs, independent B & Y, cavity resonance tracking,...
- Complete the move from DSAs poor data access, network storms, free for studies,...
- LF and HF data acquisition and software to be almost identical
- Data flow for both systems same as HF Schottky in last run proven, reliable,...
- Data will be available continuously for 6 ch of HF and 4 ch of LF Schottky/PLL

Mei Bai - Applications of RHIC AC Dipole(s)

- spin manipulation
 - spin flipping
 - measure spin precession tune
- excite long-lasting coherent oscillation for
 - linear optics measurement
 - linear coupling measurement
 - non-linear resonance measurement
- specs

Application	BmL [Gm]	Field Orientation	Center frequency [kHz]	Tunnin range [kHz]	Duty time
Spin flipping	≥100	Hori	37.5	±1.0	2.4s
Linear optics Measurement	78	Vert Hori	64.0	1	40ms
Non-linearity Measurement	380	Vert hori	64.0	±1.0	≥80ms

The current readback of RHIC vertical ac dipole and its spectrum. The ac dipole was configured to resonate at 36.6 kHz for the spin flipping.

Head-Tail, Button, and QMM

- DAQ parallels present WCM system dedicated fast scopes with deep memory, triggers from V124 or ?, local processing to spare the network
- **■** Head-Tail
 - Use existing 1m striplines? Install additional?
 - Useful for Instabilities, Chromaticity parasitic to ARTUS,...
 - Multiband transverse spectra
- **■** Buttons Broadband transverse spectra
- **♯** Quadrupole Moment Monitor
 - Difference of sum modes from resonant moveable/PLL BPM? New PU?
 - Resonant pickup above coherent spectrum gives needed sensitivity?
 - Injection Matching, Studies (quadrupole kicker), Schottky spectra,...

Example of Head-Tail

Triggers and Buffering

- **■** Want fast 'diagnostics event' trigger (generally on the ramp)
- **#** Possible triggers
 - Time domain
 - BLMs, Coherence monitor(s), Head-Tail, Buttons,...
 - Emittance growth IPM, Schottkys,...
 - Frequency Domain Longitudinal
 - WCM broadband
 - LF and HF Schottky 'receiver' at revolution line; narrowband
 - Frequency Domain Transverse (Beam Transfer Functions!)
 - Buttons broadband
 - Head Tail multiband
 - Schottkys narrowband
- **■** For fast events necessary to buffer a few seconds (at worst) is practical
- **■** What to buffer? WCM, buttons, head-tail, QMM?, Schottky's

Unified Data Display

- # Three monitors (ie CRTs) two frequency domain, one time domain
- **Zoomable** windows
- **#** Frequency domain broadband and narrowband
 - Broadband WCM, Buttons, Head-tail...
 - Narrowband Artus, Schottky (10 ch?),...
 - Format spectrogram plus most recent in conventional line presentation
- **▼** Time Domain Tune/Chrom/Coupling and Others
 - Tune/Chrom/Coupling BPMs, ARTUS, PLL, Schottkys,...
 - Others emittance, coherence, WCM/DCCT, RF BPMs, QMM, BLM?,...
- # Three Conditions (with auto-switching) Injection, Ramp, Store
- **■** Data management issues update rates, replication, display speed,...
- **#** Recoverable from archive in this format unzoom time scale?